Nicotinic excitation of rat hypoglossal motoneurons.

نویسندگان

  • N L Chamberlin
  • C M Bocchiaro
  • R W Greene
  • J L Feldman
چکیده

Hypoglossal motoneurons (HMNs), which innervate the tongue muscles, are involved in several important physiological functions, including the maintenance of upper airway patency. The neural mechanisms that affect HMN excitability are therefore important determinants of effective breathing. Obstructive sleep apnea is a disorder characterized by recurrent collapse of the upper airway that is likely due to decline of pharyngeal motoneuron activity during sleep. Because cholinergic neuronal activity is closely coupled to wake and sleep states, we tested the effects and pharmacology of nicotinic acetylcholine receptor (nAChR) activation on HMNs. We made intracellular recordings from HMNs in medullary slices from neonatal rats and found that local application of the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, excited HMNs by a Ca(2+)-sensitive, and TTX-insensitive inward current that was blocked by dihydro-beta-erythroidine (IC(50): 19+/-3 nM), methyllycaconitine (IC(50): 32+/-7 nM), and mecamylamine (IC(50): 88+/-11 nM), but not by alpha-bungarotoxin (10 nM). This is consistent with responses being mediated by postsynaptic nAChRs that do not contain the alpha7 subunit. These results suggest that nAChR activation may contribute to central maintenance of upper airway patency and that the decline in firing rate of cholinergic neurons during sleep could potentially disfacilitate airway dilator muscle activity, contributing to airway obstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotine protects rat hypoglossal motoneurons from excitotoxic death via downregulation of connexin 36

Motoneuron disease including amyotrophic lateral sclerosis may be due, at an early stage, to deficit in the extracellular clearance of the excitatory transmitter glutamate. A model of glutamate-mediated excitotoxic cell death based on pharmacological inhibition of its uptake was used to investigate how activation of neuronal nicotinic receptors by nicotine may protect motoneurons. Hypoglossal m...

متن کامل

Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording.

The effect of cellular dialysis associated with whole-cell recording was studied in 24 developing hypoglossal motoneurons in a rat brainstem slice preparation. In all cases, establishing whole-cell continuity with the electrode solution resulted in an increase in the input resistance measured in current clamp. The mean magnitude of this increase was 39.7% and the time course of the maximum effe...

متن کامل

Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro.

The postnatal maturation of rat brainstem (oculomotor and hypoglossal nuclei) and spinal motoneurons, based on data collected from in vitro studies, is reviewed here. Membrane input resistance diminishes with age, but to a greater extent for hypoglossal than for oculomotor motoneurons. The time constant of the membrane diminishes with age in a similar fashion for both oculomotor and hypoglossal...

متن کامل

Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons.

AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr act...

متن کامل

Mesopontine cholinergic projections to the hypoglossal motor nucleus.

Mesopontine cholinergic (ACh) neurons have increased discharge during wakefulness, rapid eye movement (REM) sleep, or both. Hypoglossal (12) motoneurons, which play an important role in the control of upper airway patency, are postsynaptically excited by stimulation of nicotinic receptors, whereas muscarinic receptors presynaptically inhibit inputs to 12 motoneurons. These data suggest that ACh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2002